- home
- SAT Discussions
- JEE Discussions
- NEET Discussions
- CBSE Discussions
- International Bacc..
- Explore
- COLLEGE & UNIVERSI..
- SAT Preparation
- SAT II
- KEAM Discussions
- MHT CET Discussion
Popular Questions
- Function f(x) = x - [x], where [.] denotes a greatest integer
- If f(x) satisfies the relation 2f(x) + f(1 - x) = x2 for all real x, then f(x) is
- Range of the function f(x)
- For Φ > π/3, the value of f(Φ)
- The range of f(x) equation give as follows
- Let f:R-->R be a differentiable function having f(2)=6, f(2)=(1/48). then lim x -->2 f(x) integral 6 4t^3/x-2 dt equals
- the value of lim a-->0 sin a - tan a/sin^3 a will be
- the value of lim N-->infinity 1-n^2/sum n will be
- lim x-->0 |x|/x=
- the value of lim x-->0 (1+x)^1/x -e+1/2 ex/x^2 is
- lim x-->0 sin(1/x) is
- it is given that f(a) exists, then lim x-->a xf(a)-a f(x)/x-a is equal to
- if f(x)={x, if x is rational -x, if x is irrational than lim x-->0 f(x) is
- lim x-->0 e^tanX -e^x/tanX-x =
- lim x-->0 x log sin x is equal to
- lim x-->0 (cos ex x )^1/logX equal
- lim x-->4[x^3/2 -8/x-4]=
- lim x-->0 e^1/x/e(1/x+1)=
- if f(a)=2, f(a)=1, g(a)=-1; g(a)=2, then limX-->a g(x)f(a)-g(a)f(x)/x-a =
- the value of lim N-->infinity 1/1.3+1/3.5+1/5.7+1/7.9+...+1/(2n-1)(2n+1) is equal to
- lim x-->0 e^ax-e^beta x/x =
- the value of lim x-->0 1+sinX-cosX+log(1-x)/x^3, is
- the value of lim x-->0 (4^x-1)^3/sin x^2/4 log (1+3x), is
- lim x-->pie/2 cotX-cosX/(pie-2x)^3 equal
- the value of the constant alpha and beta such that limX-->infinity (x^2+1/x+1 -alphaX-beta)=0 are respectively
- lim theta-->0 4theta(4theta-sin theta)/(1-cos2theta)^2 is
- the value of limX-->infinity rootX+rootX+rootX....+rootX is
- the value of the limit limX-->2 e^3x-6 -1/sin(2-x) is
- the value of limX-->1 sin(e^x-1 -1)/logX is
- limX-->0 1-cosMX/1-cosNX =
- LimX-->0 (1+tanX/1+sinX)^cosecX is equal to
- limN-->infinity [1^3+2^3+3^3+.......+n^3/n^4]=
- limX-->0 (1+x)^n-1/x=
- if f(x)={sinX,x,is not equal to n pie, nEZ 0, otherwise and g(x)={x^2+1,x is not equal to 0, 2 4,x=0 5,x=2 then limX-->0 g(f(x)}=
- limX-->1 1+logX-x/1-2x+x^2=
- limX-->0 a^sinX-1/b^sinX-1=
- limX-->0(1-ax)^1/x=
- The value of himX-->0 5^x-5^-x/2x=
- limX-->1 tan(x^2-1)/x-1 is equal to
- limX-->infinity 3.2^n+1-4.5^n+1/5.2^n+7.5^n=

Popular Questions
- Function f(x) = x - [x], where [.] denotes a greatest integer
- If f(x) satisfies the relation 2f(x) + f(1 - x) = x2 for all real x, then f(x) is
- Range of the function f(x)
- For Φ > π/3, the value of f(Φ)
- The range of f(x) equation give as follows
- Let f:R-->R be a differentiable function having f(2)=6, f(2)=(1/48). then lim x -->2 f(x) integral 6 4t^3/x-2 dt equals
- the value of lim a-->0 sin a - tan a/sin^3 a will be
- the value of lim N-->infinity 1-n^2/sum n will be
- lim x-->0 |x|/x=
- the value of lim x-->0 (1+x)^1/x -e+1/2 ex/x^2 is
- lim x-->0 sin(1/x) is
- it is given that f(a) exists, then lim x-->a xf(a)-a f(x)/x-a is equal to
- if f(x)={x, if x is rational -x, if x is irrational than lim x-->0 f(x) is
- lim x-->0 e^tanX -e^x/tanX-x =
- lim x-->0 x log sin x is equal to
- lim x-->0 (cos ex x )^1/logX equal
- lim x-->4[x^3/2 -8/x-4]=
- lim x-->0 e^1/x/e(1/x+1)=
- if f(a)=2, f(a)=1, g(a)=-1; g(a)=2, then limX-->a g(x)f(a)-g(a)f(x)/x-a =
- the value of lim N-->infinity 1/1.3+1/3.5+1/5.7+1/7.9+...+1/(2n-1)(2n+1) is equal to
- lim x-->0 e^ax-e^beta x/x =
- the value of lim x-->0 1+sinX-cosX+log(1-x)/x^3, is
- the value of lim x-->0 (4^x-1)^3/sin x^2/4 log (1+3x), is
- lim x-->pie/2 cotX-cosX/(pie-2x)^3 equal
- the value of the constant alpha and beta such that limX-->infinity (x^2+1/x+1 -alphaX-beta)=0 are respectively
- lim theta-->0 4theta(4theta-sin theta)/(1-cos2theta)^2 is
- the value of limX-->infinity rootX+rootX+rootX....+rootX is
- the value of the limit limX-->2 e^3x-6 -1/sin(2-x) is
- the value of limX-->1 sin(e^x-1 -1)/logX is
- limX-->0 1-cosMX/1-cosNX =
- LimX-->0 (1+tanX/1+sinX)^cosecX is equal to
- limN-->infinity [1^3+2^3+3^3+.......+n^3/n^4]=
- limX-->0 (1+x)^n-1/x=
- if f(x)={sinX,x,is not equal to n pie, nEZ 0, otherwise and g(x)={x^2+1,x is not equal to 0, 2 4,x=0 5,x=2 then limX-->0 g(f(x)}=
- limX-->1 1+logX-x/1-2x+x^2=
- limX-->0 a^sinX-1/b^sinX-1=
- limX-->0(1-ax)^1/x=
- The value of himX-->0 5^x-5^-x/2x=
- limX-->1 tan(x^2-1)/x-1 is equal to
- limX-->infinity 3.2^n+1-4.5^n+1/5.2^n+7.5^n=