- home
- SAT Discussions
- JEE Discussions
- NEET Discussions
- CBSE Discussions
- International Bacc..
- Explore
- COLLEGE & UNIVERSI..
- SAT Preparation
- SAT II
- KEAM Discussions
- MHT CET Discussion
Popular Questions
- sin2 17.5° + sin2 72.5° is equal to
- If cosΦ
- If tanΦ + secΦ = ex, then cosΦ equals
- If a lies in the second quadrant and 3 tan A + 4 = 0, then
- equation is given below
- Let A and B be acute angles such that sin A = sin2 B
- Indicate the perpendicular, the hypotenuse and the base (in that order) with respect
- From the following figure, find
- If tan A = 4/3, find the other trignometric ratios
- In ∆PQR right angled at Q, QR = 3 cm and PR - PQ = 1 cm. Determine the values
- In a ∆ABC, right angled at B, if tan A = 1, verify that 2sin
- If m cot A = n, find the value of
- If ♀ is an acute angle and 3 sin ♀ = 4 cos♀,
- prove that cosec2♀ - cos2♀/cot2♀
- Evaluate cos2 30° + sin2 45° - 1/3 tan2 60°
- Find the value of
- Evaluate 8 underoot 3 cosec square 30° sin 60°
- If 2 cos 3 theta = underoot 3, find the value of theta
- What happens to value of tan theta when theta increase from
- If angle A = angle B =45°, verify that sin (A + B) = sin A cos B
- If sin(A - B) = 1/2, cos(A + B) = 1/2, 0 degree < A + B
- If tan (3x + 30 degree) = 1, find the value of x
- In a triangle ABC, right angled at B, angle A = angle C, find
- Find acute angles A and B, if sin (A + 2B) = underoot 3/2 and cos
- In right angled triangle ABC, right angled at B, AB = 5 cm and angle ACB = 30 degree
- In the following figure, triangle PQR is right angled at Q, PQ = 3 cm
- If A and B are acute angles such that sin A = cos B, prove that (A + B)
- Evaluate (1.) sin 41 degree/cos 49 degree
- Evaluate (1.) cos 53 degree - sin 37 degree
- Express cosec 48 degree + tan 88 degree in terms of T-ratios
- Evaluate tan 15 degree/cot 75 degree + sin 25 degree/cos 65 degree
- Find the value of (tan 1 degree tan 2 degree tan 3 degree......... tab 89 degree)
- Find the value of (tan 1 degree tan 2 degree tan 3 degree....... tan 89 degree)
- Evaluate tan 50 degree + sec 50 degree/cot 40 degree + cosec 40 degree + cos 40 degree cosec 50 degree
- If sec 5A = cosec (A + 30 degree), where
- If cos(A - B) = cos A cos B + sin A sin B, find the value of
- Evaluate sin 70 degree/cos 20 degree + cosec 36 degree/sec 54 degree
- Express the ratios cos A, tan A and sec A in terms of sin A
- Prove that cot A + tan A = sec A cosec A
- Prove the trigonometric identity

Popular Questions
- sin2 17.5° + sin2 72.5° is equal to
- If cosΦ
- If tanΦ + secΦ = ex, then cosΦ equals
- If a lies in the second quadrant and 3 tan A + 4 = 0, then
- equation is given below
- Let A and B be acute angles such that sin A = sin2 B
- Indicate the perpendicular, the hypotenuse and the base (in that order) with respect
- From the following figure, find
- If tan A = 4/3, find the other trignometric ratios
- In ∆PQR right angled at Q, QR = 3 cm and PR - PQ = 1 cm. Determine the values
- In a ∆ABC, right angled at B, if tan A = 1, verify that 2sin
- If m cot A = n, find the value of
- If ♀ is an acute angle and 3 sin ♀ = 4 cos♀,
- prove that cosec2♀ - cos2♀/cot2♀
- Evaluate cos2 30° + sin2 45° - 1/3 tan2 60°
- Find the value of
- Evaluate 8 underoot 3 cosec square 30° sin 60°
- If 2 cos 3 theta = underoot 3, find the value of theta
- What happens to value of tan theta when theta increase from
- If angle A = angle B =45°, verify that sin (A + B) = sin A cos B
- If sin(A - B) = 1/2, cos(A + B) = 1/2, 0 degree < A + B
- If tan (3x + 30 degree) = 1, find the value of x
- In a triangle ABC, right angled at B, angle A = angle C, find
- Find acute angles A and B, if sin (A + 2B) = underoot 3/2 and cos
- In right angled triangle ABC, right angled at B, AB = 5 cm and angle ACB = 30 degree
- In the following figure, triangle PQR is right angled at Q, PQ = 3 cm
- If A and B are acute angles such that sin A = cos B, prove that (A + B)
- Evaluate (1.) sin 41 degree/cos 49 degree
- Evaluate (1.) cos 53 degree - sin 37 degree
- Express cosec 48 degree + tan 88 degree in terms of T-ratios
- Evaluate tan 15 degree/cot 75 degree + sin 25 degree/cos 65 degree
- Find the value of (tan 1 degree tan 2 degree tan 3 degree......... tab 89 degree)
- Find the value of (tan 1 degree tan 2 degree tan 3 degree....... tan 89 degree)
- Evaluate tan 50 degree + sec 50 degree/cot 40 degree + cosec 40 degree + cos 40 degree cosec 50 degree
- If sec 5A = cosec (A + 30 degree), where
- If cos(A - B) = cos A cos B + sin A sin B, find the value of
- Evaluate sin 70 degree/cos 20 degree + cosec 36 degree/sec 54 degree
- Express the ratios cos A, tan A and sec A in terms of sin A
- Prove that cot A + tan A = sec A cosec A
- Prove the trigonometric identity